Banco Interamericano de Desarrollo
facebook
twitter
youtube
linkedin
instagram
Abierto al públicoBeyond BordersCaribbean Development TrendsCiudades SosteniblesEnergía para el FuturoEnfoque EducaciónFactor TrabajoGente SaludableGestión fiscalGobernarteIdeas MatterIdeas que CuentanIdeaçãoImpactoIndustrias CreativasLa Maleta AbiertaMoviliblogMás Allá de las FronterasNegocios SosteniblesPrimeros PasosPuntos sobre la iSeguridad CiudadanaSostenibilidadVolvamos a la fuente¿Y si hablamos de igualdad?Inicio
Administración pública Agua y saneamiento Ciencia, tecnología e innovación Comercio e integración regional Conocimeinto Abierto Desarrollo infantil temprano Desarrollo urbano y vivienda Educación Energía Género y diversidad Impacto Industrias Creativas Medio ambiente, cambio climático y Salvaguardias Política y gestión fiscal Salud Sin Miedos Trabajo y pensiones
  • Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer

Moviliblog

Blog del BID sobre Transporte

  • INICIO
  • CATEGORIAS
    • Caratulas
    • Innovación y sistemas inteligentes de transporte
    • Logística
    • Logística de carga
    • Transporte
    • Transporte e igualdad de género
    • Transporte Sostenible
    • Transporte Urbano
    • Seguridad Vial
    • Series
  • Autores
  • Español

How to Prepare for Self-driving Cars: The Planners’ Dilemma

February 19, 2019 by David Bodde Dejar un comentario


Wretched indeed is the plight of the urban mobility planner. On the one hand, the advent of automated vehicles (AV) promises to relieve the cost, perils, and tedium of urban travel. But on the other hand, anticipating the policy actions and infrastructure investments needed to accommodate the new technologies remains extraordinarily difficult.

Most fundamentally, the pace and direction of the underlying technology defies prediction. And so, any investment in road infrastructures, typically lasting from 30 years to forever, must be flexible enough to provide for the current human-piloted traffic as well as the new robotic vehicles during the transition. Throughout this lengthy transition, wise and flexible policies will be needed to ensure public acceptance of the new technology. These challenges reinforce one another.

As a result, the exuberant forecasts of the past few years now appear increasingly irrational. The hype-cycle has crested, and so we begin the slide into the trough of disillusionment, the ideal place from which to plan the AVs’ recovery.

self-driving cars

Subsequent essays will propose ways to reverse this incipient plunge, but first we must understand the real-world nature of the challenges.

The Technology Challenge

Deep learning algorithms (DL) set the pace for advances because they learn from experience and thereby adapt to road, traffic, and weather conditions. Supporting the DL are: advanced sensors; light-weight, low-power computing; and cost declines in electric power trains. DL performance in combination with the supporting technologies has advanced powerfully in recent years, fueling the rising expectations of the early hype cycle.

But even as automated vehicles learn to navigate the road and traffic control infrastructures, they increasingly face another kind of challenge: the interface with humans whose actions they can neither anticipate nor control. How should an automated system (always rational, attentive, and unemotional) interact with the “human system” (capable of good judgment, but sometimes irrational, distracted, aggressive, or even drunk)? The rules of encounter are not obvious.

Sharing the Road

Consider a typical urban traffic situation: a downtown intersection during peak hours. Pedestrians and human driven vehicles compete for the scarce times during which passage may be gained.

The black car at the top of the page is attempting to make a turn through a flow of pedestrian traffic, which appears to be opening for the vehicle. In effect, a social transaction is being made between those on foot and those in the car. The humans on both sides negotiate their passage by signaling intent—through eye contact, body language, gestures (perhaps impolite), and occasionally the horn. Normal humans are skilled at understanding these signals. It remains unclear how deep learning algorithms can learn the needed skills…or once learned, whether the laws would allow them to be employed at all.

The difficulty arises from extracting meaning and intent from a social situation. Consider the image below [1]. The picture is a bit fuzzy, but most humans would identify Barak Obama as the central figure. The mirrors with their images of the action would complicate DL interpretation.

Most humans could readily understand the transaction and the intent of the actors, often giving a humorous interpretation. The current deep learning algorithms would be flummoxed.

self-driving cars

Synthetic Judgment and the Human Interaction

Difficulties notwithstanding, recent developments offer promising solutions. In 2017 a DL-enhanced program from DeepMind [https://deepmind.com/] defeated skilled human players in a game of poker…a game of deception and imperfect information. The algorithm grew to recognize a bluff and even apply it in suitable situations. It is now being employed in defense simulation, and might be adapted to traffic situations, perhaps an apt analogue [2]. And in late January of this year, DeepMind announced a new DL breakthrough in which its AlphaStar system defeated highly skilled human players in the most challenging of real-time strategy games, StarCraft [3].

Probabilistic DL strategies supplement the DL algorithms by continuously evaluating the likelihood of safety-related actions by other vehicles and reconsidering decisions made an instant ago. This elicits new information in real time and hence arrives at better decisions. Such capabilities could lead to a fundamental, general form of artificial intelligence and eliminate the need for any accommodation whatsoever by the road infrastructure.

Thus the chief uncertainty, synthetic judgment for the human interaction, appears resolvable, but the timing of this resolution remains opaque.

The Troubles of the Day are Sufficient

The commercial self-driving cars now on the road have no interpretive capabilities. Instead, they substitute strict adherence to the traffic rules for situational judgment. In contrast, human-driven cars are all about situational judgment. They move a bit over the speed limit (sometimes a lot over), and they often interpret a stop sign as a suggestion to pause. The robots have none of these bad habits, and so are seen by humans as obstacles to the flow of traffic.

This is generating much public animosity. In Arizona, for example, the Waymo AVs provoke violent protests from some drivers they encounter on the streets [4]. And at the same time (rather ironically), public opinion surveys show decreasing confidence in the safety of the self-driving cars [5].

Thus the planners’ dilemma: when might self-driving cars gain a capability for synthetic judgment sufficient to mesh with humans? And while the technology advances, should investments in infrastructure or traffic policies be employed to offset the robotic disadvantage and allow for a smoother transition? How does the planner play the game of real life?  More on this in subsequent essays.

References

[1] Fridman, Lex. Deep Learning Basics Public lecture presented at MIT on 11 January, 2019 and available at: https://www.youtube.com/watch?v=O5xeyoRL95U

Further MIT courses available at: https://deeplearning.mit.edu/

[2] Simonite, T. “A Poker-Playing Robot Goes to Work for the Pentagon” Wired, 16 January, 2019. Available here 

[3] Described fully at: https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

[4] Romero, S. “Wielding Rocks and Knives, Arizonans Attack Self-Driving Cars” New York Times, 31 December, 2018. Available at: https://www.nytimes.com/2018/12/31/us/waymo-self-driving-cars-arizona-attacks.html

[5] Rapier, G. “As more self-driving technology launches, people are growing more anxious about the supposed benefits” BusinessInsider, 12 January, 2019. Available at: https://www.businessinsider.com/self-driving-car-worries-grow-despite-new-products-2019-1


Archivado bajo:Innovación y sistemas inteligentes de transporte Etiquetado con:dilemma, planners, self-driving cars

David Bodde

Dr. David Bodde helps students learn to use technology to become more effective innovators and entrepreneurs. His professional experience includes Vice President of the Midwest Research Institute, Assistant Director of the U. S. Congressional Budget Office, and Deputy Assistant Secretary in the Department of Energy. He serves on the Board of Directors of several publicly-traded companies and privately held ventures. Dr. Bodde holds the Doctor of Business Administration, Harvard University (1976); Master of Science degrees in nuclear engineering (1972) and management (1973), both from the Massachusetts Institute of Technology (MIT); and a Bachelor of Science from West Point (1965). He was a soldier once and served in the Army in Vietnam.

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Siguenos

Subscribe

Buscar

Acerca del blog

Desde BID Transporte mejoramos vidas en América Latina y el Caribe promoviendo una movilidad más eficiente, accesible y segura.

Descubre nuestro espacio de intercambio de ideas y conocimiento y forma parte de él. Desde Moviliblog, queremos compartir lo último en movilidad y transporte en América Latina y el Caribe e invitarlos a conocer nuestras áreas temáticas: ITS, seguridad vial, grandes proyectos, logística y transporte urbano, así como nuestras temáticas transversales de evaluación de impacto, género y transporte sostenible.

Entradas Recientes

  • El transporte, un actor clave de la infraestructura del cuidado
  • Fondeo y financiamiento del transporte público: estrategias para impulsar la movilidad sostenible en América Latina y el Caribe
  • Pavimentados 2.0: impulsar la eficiencia en el transporte con IA 
  • Ríos de oportunidadas: las vías fluviales del Amazonas, clave para el crecimiento económico y la inclusión social
  • Caminos accesibles: promovemos una cultura urbana inclusiva, donde la ciudad se construye sin barreras que generen exclusión

Archives

Footer

Banco Interamericano de Desarrollo
facebook
twitter
youtube
youtube
youtube

    Blogs escritos por empleados del BID:

    Copyright © Banco Interamericano de Desarrollo ("BID"). Este trabajo está disponible bajo los términos de una licencia Creative Commons IGO 3.0 Reconocimiento-No comercial-Sin Obras Derivadas. (CC-IGO 3.0 BY-NC-ND) y pueden reproducirse con la debida atribución al BID y para cualquier uso no comercial. No se permite ningún trabajo derivado. Cualquier disputa relacionada con el uso de las obras del BID que no se pueda resolver de manera amistosa se someterá a arbitraje de conformidad con el reglamento de la CNUDMI. El uso del nombre del BID para cualquier otro propósito que no sea la atribución, y el uso del logotipo del BID estarán sujetos a un acuerdo de licencia escrito por separado entre el BID y el usuario y no está autorizado como parte de esta licencia CC-IGO. Tenga en cuenta que el enlace proporcionado anteriormente incluye términos y condiciones adicionales de la licencia.


    Blogs escritos por autores externos:

    Para preguntas relacionadas con los derechos de autor para autores que no son empleados del BID, por favor complete el formulario de contacto de este blog.

    Las opiniones expresadas en este blog son las de los autores y no necesariamente reflejan las opiniones del BID, su Directorio Ejecutivo o los países que representan.

    Atribución: además de otorgar la atribución al respectivo autor y propietario de los derechos de autor, según proceda, le agradeceríamos que incluyera un enlace que remita al sitio web de los blogs del BID.



    Política de privacidad

    Copyright © 2025 · Magazine Pro on Genesis Framework · WordPress · Log in

    Banco Interamericano de Desarrollo

    Aviso Legal

    Las opiniones expresadas en estos blogs son las de los autores y no necesariamente reflejan las opiniones del Banco Interamericano de Desarrollo, sus directivas, la Asamblea de Gobernadores o sus países miembros.

    facebook
    twitter
    youtube
    En este sitio web se utilizan cookies para optimizar la funcionalidad y brindar la mejor experiencia posible. Si continúa visitando otras páginas, se instalarán cookies en su navegador.
    Para obtener más información al respecto, haga clic aquí.
    x
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
    Non-necessary
    Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
    SAVE & ACCEPT