Banco Interamericano de Desarrollo
facebook
twitter
youtube
linkedin
instagram
Abierto al públicoBeyond BordersCaribbean Development TrendsCiudades SosteniblesEnergía para el FuturoEnfoque EducaciónFactor TrabajoGente SaludableGestión fiscalGobernarteIdeas MatterIdeas que CuentanIdeaçãoImpactoIndustrias CreativasLa Maleta AbiertaMoviliblogMás Allá de las FronterasNegocios SosteniblesPrimeros PasosPuntos sobre la iSeguridad CiudadanaSostenibilidadVolvamos a la fuente¿Y si hablamos de igualdad?Inicio
Administración pública Agua y saneamiento Ciencia, tecnología e innovación Comercio e integración regional Conocimeinto Abierto Desarrollo infantil temprano Desarrollo urbano y vivienda Educación Energía Género y diversidad Impacto Industrias Creativas Medio ambiente, cambio climático y Salvaguardias Política y gestión fiscal Salud Sin Miedos Trabajo y pensiones
  • Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer

Seguridad Ciudadana

  • INICIO
  • CATEGORÍAS
    • Estadísticas y datos del crimen
    • Policía
    • Prevención del crimen
    • Reforma de la justicia
    • Sistemas penitenciarios
    • Violencia de género
  • Autores
  • Español

¿Cuál es el potencial uso de Twitter para predecir el crimen?

March 9, 2016 by Rogelio Granguillhome Ocho Deja un comentario


Por Rogelio Granguillhome

Las redes sociales como Twitter y Facebook han servido como herramientas para predecir revoluciones políticas, elecciones y hasta brotes pandémicos. Pero Twitter, ¿sirve para incorporarlo a los modelos predictivos de crimen?

Twitter es una de las redes sociales más utilizadas en el mundo. A enero del 2016, existen alrededor de 332 millones de usuarios activos en Twitter. Como es sabido, un tweet es un texto de 140 caracteres para comunicarnos de manera breve y directa. Es una de las herramientas más usadas para obtener información y noticias al instante. Muchos tweets cuentan con identificadores georreferenciados que permiten conocer la posición exacta de donde se mandó el tweet. Esta última es la pieza clave para los modelos predictivos.

Usando software de identificación de texto y la ubicación geográfico de tweets, investigadores de la Universidad de Virginia diseñaron un modelo predictivo de crimen. La simulación se llevó a cabo incorporando tweets y datos de la policía en la ciudad de Chicago durante una ventana de 3 meses. Este ejercicio comparó dos modelos predictivo para 25 tipos de delitos. El primero utilizó datos de la policía (modelo tradicional) y el segundo utilizó el modelo tradicional de predicción incorporando tweets. El algoritmo que incorpora tweets busca palabras específicas indicativas de que pueda ocurrir un crimen. El tipo de palabras que busca el modelo están asociadas con actividades del día a día que normalmente tienen una alta relación con actividad criminal, como por ejemplo ir a bares o discotecas. Los resultados, gracias a su característica geográfica, son puestos en un mapa interactivo de Chicago para identificar “puntos calientes” de incidencia delictiva.

¿Funciona este modelo?

Evidencia descriptiva parece sugerir que esto podría tener potencial. Para 19 de los 25 crímenes analizados se encontraron mejoras en la exactitud de la predicción delictiva al incorporar tweets. Los crímenes donde se vieron mejoras fueron acecho (“stalking”, en inglés), vandalismo y apuestas ilegales. Por otro lado, los delitos donde no se exhibieron mejoras fueron para incendio malicioso, secuestros y amenazas.

Este modelo no está prediciendo el futuro como en la película “Minority Report”. Más bien, los tweets están iluminando áreas con concentración criminal gracias a las tendencias exhibidas en base a lo que está escribiendo la gente y a crímenes pasados. Esta herramienta tiene fines de mejor orientar la acción policial geográficamente para prevenir delitos.

MINORITY-REPORTDe acuerdo a una entrevista con el autor de la investigación el Dr. Matthew Gerber, no se cuenta con una explicación concreta del porqué algunos delitos fueron más difíciles de predecir usando Twitter que otros. El estudio sugiere que una limitación puede ser el lenguaje utilizado en Tweets, que se caracteriza por ser informal y abreviado.

Sin embargo, aún no se han realizado evaluaciones rigurosas de estos métodos que permitan establecer la relación causal entre estas herramientas que complementan las predicciones de la policía y las tasas de crimen.

En nuestra región, existen más de 30 millones de usuarios de Twitter, siendo Brasil y México los países de más uso. Dado que poco más del 50% de la población es menor de 24 años,  el rol de las redes sociales no sólo aumentará, sino que será un pilar importante de la vida cotidiana de nuestros jóvenes en los próximos años.

En una región donde estadísticas sobre crimen y violencia son difíciles de obtener o recopilar, los datos generados de redes sociales o de dispositivos móviles pueden dar a luz comportamientos de nuestra sociedad que complementarían la información con la que ya se cuenta. Estos elementos producen información en un gran volumen cada segundo, ayudándonos a pronosticar y entender el comportamiento humano de maneras inimaginables.

Mientras, los dejamos con un pequeño ejercicio que hicimos en el la unidad de seguridad ciudadana del BID. Bajamos 3.000 tweets con la palabra “crimen” con fecha del 9 de marzo. Luego identificamos las palabras más comunes dentro de estos tweets, que presentamos en una nube de palabras. Estas son las palabras más frecuentes que nos dejan saber de qué está hablando la gente en Twitter cuando habla sobre crimen:

Fuente: Elaboración propia a partir de datos recopilados de la Interfaz de Programación de Aplicaciones (API) de Twitter
Fuente: Elaboración propia a partir de datos recopilados de la Interfaz de Programación de Aplicaciones (API) de Twitter

Las palabras más frecuentes en los tweets que contienen la palabra crimen fueron Honduras, alcalde,  relación, arrestan y organizado. Esto más que nada se debe a que el 9 de marzo la Agencia Técnica de Investigación Criminal (ATIC) de Honduras arrestó al alcalde del municipio de San Fernando en el departamento de Ocotepeque por tener presuntos nexos con el crimen organizado.

En el BID, continuaremos impulsando nuestra rigurosa agenda de conocimiento para acortar las brechas de conocimiento que existen en la región. Uno de los próximos pasos a seguir será estudiar la viabilidad de incorporar Twitter y otras fuentes alternativas de información para poder entender con más profundidad la incidencia delictiva y victimización en la región. Sobre todo, desde un punto de vista del comportamiento humano. En una segunda parte de este blog hablaremos de datos recopilados de dispositivos móviles.

Suscríbase a nuestras alertas de email del blog Sin Miedos

Foto: Flickr CC Bernard Golbach


Archivado Bajo:Entradas en ESPAÑOL, Reportes y estudios Etiquetado con:seguridad ciudadana

Rogelio Granguillhome Ocho

Rogelio Granguillhome Ocho es economista por Syracuse University, donde también obtuvo maestrías en Economía y Relaciones Internacionales por la Maxwell School of Citizenship and Public Affairs. Sus líneas de investigación son economía del crimen, análisis de Big Data, y seguridad internacional, con énfasis en políticas públicas de prevención delictiva en América Latina. Desde 2014 se desempeña como consultor en el equipo de Seguridad Ciudadana y Justicia del BID.

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Siguenos

Subscribe

SIN MIEDOS

Un espacio para ideas y soluciones sobre seguridad ciudadana y justicia en América Latina y el Caribe.

Buscar

Similar post

    None Found

Footer

Banco Interamericano de Desarrollo
facebook
twitter
youtube
youtube
youtube

    Blogs escritos por empleados del BID:

    Copyright © Banco Interamericano de Desarrollo ("BID"). Este trabajo está disponible bajo los términos de una licencia Creative Commons IGO 3.0 Reconocimiento-No comercial-Sin Obras Derivadas. (CC-IGO 3.0 BY-NC-ND) y pueden reproducirse con la debida atribución al BID y para cualquier uso no comercial. No se permite ningún trabajo derivado. Cualquier disputa relacionada con el uso de las obras del BID que no se pueda resolver de manera amistosa se someterá a arbitraje de conformidad con el reglamento de la CNUDMI. El uso del nombre del BID para cualquier otro propósito que no sea la atribución, y el uso del logotipo del BID estarán sujetos a un acuerdo de licencia escrito por separado entre el BID y el usuario y no está autorizado como parte de esta licencia CC-IGO. Tenga en cuenta que el enlace proporcionado anteriormente incluye términos y condiciones adicionales de la licencia.


    Blogs escritos por autores externos:

    Para preguntas relacionadas con los derechos de autor para autores que no son empleados del BID, por favor complete el formulario de contacto de este blog.

    Las opiniones expresadas en este blog son las de los autores y no necesariamente reflejan las opiniones del BID, su Directorio Ejecutivo o los países que representan.

    Atribución: además de otorgar la atribución al respectivo autor y propietario de los derechos de autor, según proceda, le agradeceríamos que incluyera un enlace que remita al sitio web de los blogs del BID.



    Política de privacidad

    Copyright © 2025 · Magazine Pro on Genesis Framework · WordPress · Log in

    Banco Interamericano de Desarrollo

    Aviso Legal

    Las opiniones expresadas en estos blogs son las de los autores y no necesariamente reflejan las opiniones del Banco Interamericano de Desarrollo, sus directivas, la Asamblea de Gobernadores o sus países miembros.

    facebook
    twitter
    youtube
    En este sitio web se utilizan cookies para optimizar la funcionalidad y brindar la mejor experiencia posible. Si continúa visitando otras páginas, se instalarán cookies en su navegador.
    Para obtener más información al respecto, haga clic aquí.
    X
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
    Non-necessary
    Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
    SAVE & ACCEPT